Evaluations of the physical and physicochemical properties and perception of liking of conventional and low-calorie orange jellies

Bruna Aparecida Simoncello, Cassandra Justina Souza Maia, Reginaldo de Souza Monteiro, Orlando David Henrique dos Santos, Kelly Moreira Bezerra Gandra, Patrícia Aparecida Pimenta Pereira


There is a growing demand for reduced-calorie products today due to changing dietary habits of the population. This challenges the food industry to design products that resemble conventional ones concerning physical, physicochemical, and sensory characteristics. Thus, the objective of this study was to evaluate the physical and physicochemical properties and perception of the liking of conventional and low-calorie orange jellies. Two different formulations (conventional and low-calorie) of each type of orange jelly were prepared and assessed under physical, physicochemical, sensory, and statistical analysis. The results showed that the formulated jellies presented differences in terms of the physical and physicochemical parameters studied, except for the color parameter a*. Conventional jelly had lower values of pH, acidity, and soluble solids, and higher moisture content. Additionally, conventional jelly was found to be lighter, more yellow, less rigid, and less viscous, than low-calorie orange jellies most likely due to its shorter cooking time. The two sensorial methodologies (time-intensity and temporal dominance of sensations analysis) used showed differences in perception of the evaluated stimuli, with the conventional orange jelly having higher dominance intensities for sweet taste and acidity. The low-calorie orange jelly presented a bitter taste, most likely due to the use of sweeteners.


Fruit processing; Citrus sinensis L. Osbeck; Temporal analysis; Rheology.

Full Text:



Abolila, R.M., Barakat, H., El-Tanahy, H.A., & El-Mansy, H.A. (2015). Chemical, nutritional and organoleptical characteristics of orange-based formulated low-calorie jams. Food and Nutrition Sciences, 6(13), 1229-1244. http://dx.doi.org/10.4236/fns.2015.613129.

Albert, A., Salvador, A., Schlich, P., & Fiszman, S. (2012). Comparison between temporal dominance of sensations (TDS) and key-attribute sensory profiling for evaluating solid food with contrasting textural layers: Fish sticks. Food Quality and Preference, 24(1), 111–118. https://doi.org/10.1016/j.foodqual.2011.10.003.

Albuquerque, M.A.C., Levit, R., Beres, C., Bedani, R., LeBlanc, A.M., Saad, S.M.I., & LeBlanc J.G. (2019). Tropical fruit by-products water extracts of tropical fruit by-products as sources of soluble fibres and phenolics compounds with potential antioxidant, anti-inflammatory, and functional properties. Journal of Functional Foods, 52, 724-733. https://doi.org/10.1016/j.jff.2018.12.002.

AOAC. (2005). Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 18th ed. Official Methods of Analysis, Maryland, USA.

Bayarri, S., Izquierdo, L., Durán, L., & Costell, E. (2006). Effect of addition of sucrose and aspartame on the compression resistance of hydrocolloids gels. International Journal of Food Science & Technology, 41(8), 980-986. https://doi.org/10.1111/j.1365-2621.2005.01156.x.

Cardoso, R.L. (2008). Stability of the color of mountain apple jelly (Eugenia malaccensis, L.) without rind stored at 25 ºC and 35 ºC in the presence and absence of light. Ciência e Agrotecnologia, 35(5), 1563-1567. https://doi.org/10.1590/S1413-70542008000500031

Catharino, R.R., & Santos, L.S. (2011). On-line moritoring of stevioside sweetener hydrolysis to steviol in acidic aqueous solutions. Food Chemistry, 133(4), 1632-1635. https://doi.org/10.1016/j.foodchem.2011.03.110

Chakraborty, R., & Das, A. (2019). Artificial Sweeteners. Encyclopedia of Food Chemistry, 1, 30-34.

Costa, G.M., Paula, M.M., Barão, C.E., Klososki, S.J., Bonafé, E.G., Visentainer, J.V., Cruz, A.G., & Pimentel, T.C. (2019). Yoghurt added with Lactobacillus casei and sweetened with natural sweeteners and/or prebiotics: Implications on quality parameters and probiotic survival. International Dairy Journal, 97, 139-148. https://doi.org/10.1016/j.idairyj.2019.05.007.

Curi, P.N., Carvalho, C.S., Salgado, D.L., Pio, R., Silva, D.F., Pinheiro, A.C.M., & Souza, V.R. (2018). Characterization of different native american physalis species and evaluation of their processing potential as jelly in combination with brie-type cheese. Food Science and Technology, 38(1), 112-119. https://doi.org/10.1590/1678-457x.01317.

Ferreira, D.F. (2014). Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnolgia, 38(2), 109-112. https://doi.org/10.1590/S1413-70542014000200001.

Figueroa, L.E., & Genovese, D.B. (2019). Fruit jellies enriched with dietary fibre: Development and characterization of a novel functional food product. LWT – Food Science and Technology, 111, 423–428. https://doi.org/10.1016/j.lwt.2019.05.031.

Foster, K.D., Grigor, J.M.V., Cheong, J.N., Yoo, M.J.Y., Bronlund, J.E., & Morgenstern, M.P. (2011). The role of oral processing in dynamic sensory perception. Journal of Food Science, 76(2), R49-R61. https://doi.org/10.1111/j.1750-3841.2010.02029.x.

Fu, J.T., & Rao, M.A. (1999). The sucrose influence and sorbitol in gel-sol transition of low-methoxyl pectin Ca+2 gels. Food Hydrocolloids, 13(5), 371-380. https://doi.org/10.1016/S0268-005X(99)00022-3.

Funami, T. (2011). Next target for food hydrocolloid studies: texture design of foods using hydrocolloid technology. Food Hydrocolloids, 25(8), 1904–1914. https://doi.org/ 10.1016/j.foodhyd.2011.03.010.

Hracek, V.M., Gliemmo, M.F., & Campos, C.A. (2010). Effect of steviosides and system composition on stability and antimicrobial action of sorbates in acidified model aqueous systems. Food Research International, 43(8), 2171-2175. https://doi.org/10.1016/j.foodres.2010.07.031.

IAL. Instituto Adolfo Lutz. (2008). Métodos físico-químicos para análise de alimentos. 5° ed. Brasília: Ministério da Saúde, Agência Nacional de Vigilância Sanitária.

IBGE. Instituto Brasileiro de Geografia e Estatística. (2020). Produção de laranja em 2019. Disponível em . Acesso em 08 de junho de 2020.

ISO 8586. (2012). Sensory analysis. General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors. Geneva: International Organization for Standardization.

Jackix, M.H. (1988). Doces, geléias e frutas em calda: teórico e prático. 2° ed, Campinas, publishing company of Unicamp.

Lau, M.H., Tang, J., & Swanson, B.G. (2000). Kinetics of textural and colour changes in green asparagus during thermal treatments. Journal of Food Engineering, 45(4), 231-236. https://doi.org/10.1016/S0260-8774(00)00069-8.

Lima, M.B., Domingos, F.M., Lima, J.J.F.J., Monteiro, R.S., Santos, O.D.H., & Pereira, P.A.P. (2019). Characterization and influence of hydrocolloids on low caloric orange jellies. Emirates Journal of Food and Agriculture, 31(1), 7-15. https://doi.org/10.9755/ejfa.2019.v31.i1.1894.

Macfie, H.J., Bratchell, N., Greenhoff, K., & Vallis, L.V. (1989). Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. Journal of Sensory Studies, 4(2), 129-148. https://doi.org/10.1111/j.1745-459X.1989.tb00463.x.

Meilgaard, M., Civille, G.V., & Carr, B. (2006). The SpectrumTM descriptive analysis method. In: Sensory evaluation techniques. 4th ed., Chap. 11. Boca Raton: CRC Press, pp. 189–253.

Moura, S.C.S.R., Prati, P., Vissotto, F.Z., & Rafacho, M.S. (2009). Evaluation of light strawberry and guava jellies stability. Brazilian Journal of Biosystems Engineering, 3(2), 99-110. http://dx.doi.org/10.18011/bioeng2009v3n2p99-110.

Nachtigall, A.M., & Zambiazi R,C. (2006). Hibiscus jellies with reduced caloric content: sensorial characteristics. Boletim do Centro de Pesquisa de Processamento de Alimentos, 24(1), 47-58. https://doi.org/10.5380/cep.v24i1.5295.

Nunes, A.C., & Pinheiro, A.C.M. (2013). SensoMaker. Version 1.7, UFLA, Lavras.

Oliveira, C.F.D., Pinto, E.G., Tomé, A.C., Quintana, R.C., & Dias, B.F. (2016). Development and characterization of jelly orange enriched with oats. Journal of Neotropical Agriculture, 3(3), 20-23. https://doi.org/10.32404/rean.v3i3.1203.

Oliveira, E.N.A., Santos, D.C., Rocha, A.P.T., Gomes, J.P., Martins, J.J.A., & Martins, J.N. (2015). Physical-chemical, microbiological and sensory characterization of jams made from umbu-cajá prepared with and without the sucrose addition. Revista do Instituto Adolfo Lutz, 74(2), 111-121.

Pereira, P.A.P., Souza, V.R., Silva, A.A., Queiroz, F., Borges, S.V., Pinheiro, A.C.M., & Carneiro, J.D.S. (2019). Influence of gelling agent concentration on the characteristics of functional sugar-free guava preserves. Emirates Journal of Food and Agriculture, 31(7), 501-510. https://doi.org/10.9755/ejfa.2019.v31.i7.1982.

Pereira, P.A.P., Souza, V.R., Teixeira, T.R., Queiroz, F., Borges, S.V., & Carneiro, J.D.S. (2013). Rheological behavior of functional sugar-free guava preserves: Effect of the addition of salts. Food Hydrocolloids, 31(2), 404-412. https://doi.org/10.1016/j.foodhyd.2012.11.014.

Pereira, P.A.P., Souza, V.R., Vieira, M.A., Queiroz, F., Borges, S.V., & Carneiro, J.D.S. (2017). Sugar-free guava preserve: influence of additives on textural properties. International Food Research Journal, 24(6), 2377-2386.

Popova, A.D., Velcheva, E.A., & Stamboliyska, B.A. (2012). DFT and experimental study on the IR spectra and structure of acesulfame sweetener. Journal of Molecular Structure, 1009, 23–29. https://doi.org/10.1016/j.molstruc.2011.07.039.

Rahn, A., & Yaylayan, V.A. (2010). Thermal degradation of sucralose and its potential in generation chloropropanols in the presence of glycerol. Food Chemistry, 118(1), 56-61. https://doi.org/10.1016/j.foodchem.2009.04.133.

Rosenthal, A.J. (1999). Food Texture: Measurement and Perception. Chapman & Hall Food Science Book. Aspen Publishers, Gaithersburg, MD.

Sandrou, D.K., & Arvanitoyannis, I.S. (2000). Low fat/calorie foods: current state and perspectives. Critical Reviews in Food Science and Nutrition, 40(5), 427–447. https://doi.org/10.1080/10408690091189211.

Santos, H.V., Maia, C.J.S., Lima, E.J.F., Cunha, L.R., & Pereira, P.A.P. (2019). Drivers of liking by time-intensity and temporal dominance of sensations of low-calorie orange jellies during storage. Journal of Food, Agriculture & Environment, 17(3&4), 23-26. https://doi.org/10.1234/4.2019.5561.

Souza, V.R., Marques, T.V., Goncalves, C.S., Carneiro, J.D.S., Pinheiro, A.C.M., & Nunes, C.A. (2013). Salt equivalence and temporal dominance of sensations of different sodium chloride substitutes in butter. Journal of Dairy Research, 80(3), 319–325. https://doi.org/10.1017/S0022029913000204.

Souza, V.R., Pinheiro, A.C.M., Carneiro, J.D.S., Pinto, S.M., Abreu, L.R., & Menezes, C.C. (2011). Analysis of various sweeteners in petit Suisse cheese: Determination of the ideal and equivalent sweetness. Journal of Sensory Studies, 26(5), 339–345. https://doi.org/10.1111/j.1745-459X.2011.00349.x.

Souza, V.R., Pereira, P.A.P., Pinheiro, A.C.M., Bolini, H.M.A., Borges, S.V., & Queiroz, F. (2013). Analysis of various sweeteners in low-sugar mixed fruit jam: equivalent sweetness, time-intensity analysis and acceptance test. International Journal of Food Science and Technology, 48, 1541–1548. https://doi.org/10.1111/ijfs.12123.

Souza, V.R., Pereira, P.A.P., Pinheiro, A.C.M., Lima, L.C.O., Pio, R., & Queiroz F. (2014). Analysis of the subtropical blackberry cultivar potential in jelly processing. Journal of Food Science, 79(9), S1776-S1781. https://doi.org/10.1111/1750-3841.12565.

Vieira, J.M., Oliveira Jr, F.D., Salvaro, D.B., Maffezzolli, G.P., Mello, J.D.B., Vicente, A.A., & Cunha, R.L. (2020). Rheology and soft tribology of thickened dispersions aiming the development of oropharyngeal dysphagia-oriented products. Current Research in Food Science, 3, 19-29. https://doi.org/10.1016/j.crfs.2020.02.001.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2), 117–186. https://doi.org/10.1214/aoms/1177731118.

DOI: http://dx.doi.org/10.18067/jbfs.v7i3.300


  • There are currently no refbacks.


Follow us


J. Bioen. Food Sci., Macapá, AP, Brazil. eISSN 2359-2710

  Licença Creative Commons 

The journal is licensed with Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional


Address for correspondence

Professor Victor Hugo Gomes Sales

Journal of Bioenergy and Food Science

Federal Institute of Amapá, Campus Macapá.

Rodovia BR 210 KM 3, s/n Bairro Brasil Novo. CEP: 68.909-398. Macapá, Brazil.

Phone: +55 (96) 3198-2150

jbfs@ifap.edu.br | suporte.jbfs@ifap.edu.br