Determination of emulsifying properties of chicken egg white and dehydrated egg white in different vegetable oils and ion concentration

Gisele Cristina Rabelo Silva


Emulsifying properties of oil in water emulsions using chicken egg white and dried egg white as an emulsifying agent were investigated using the conductivity technique. Changes in emulsion conductivity were recorded during and after homogenization and interpreted in terms of properties related to the emulsifying activity (EA) and emulsion stability (ES). The effect of NaCl concentration (0.0, 0.1, 0.5 and 1.0 % w/w), chicken egg white and dried egg white concentration (1.0, 2.5 and 5.0 % w/w) was studied using two vegetable oils, namely corn and canola. In general, it was observed that the EA and ES increase with increasing protein content and salt concentration, in a manner consistent with past research.


Conductivity; Emulsifying activity; Emulsion stability; Proteins; Salt; Canola, Corn

Full Text:



Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: A comparative review. Energy Conversion and Management 63, 138-148. doi:10.1016/j.enconman.2012.02.027

Ahmadi, P., Asaadian, H., Kord, S., & Khadivi, A. (2019). Investigation of the simultaneous chemicals influences to promote oil-in-water emulsions stability during enhanced oil recovery applications. Journal of Molecular Liquids, 275, 57-70. doi:

Al-Malah, K. I., Azzam, M. O. J., & Omari, R. M. (2000). Emulsifying properties of BSA in different vegetable oil emulsions using conductivity technique. Food Hydrocolloids, 14(5), 485-490. doi:

Azzam, M. O. J., Al-Malah, K. I., & Omari, R. M. (2012). Jojoba Oil/Water Emulsions Stabilized by BSA and Egg Proteins: A Study Using Conductivity Technique. Journal of Dispersion Science and Technology, 33(7), 1000-1005. doi:10.1080/01932691.2011.590440

Azzam, M. O. J., & Omari, R. M. (2002). Stability of egg white-stabilized edible oil emulsions using conductivity technique. Food Hydrocolloids, 16(2), 105-110. doi:

Cabrera-Trujillo, M. A., Filomena-Ambrosio, A., Quintanilla-Carvajal, M. X., & Sotelo-Díaz, L. I. (2018). Stability of low-fat oil in water emulsions obtained by ultra turrax, rotor-stator and ultrasound homogenization methods. International Journal of Gastronomy and Food Science, 13, 58-64. doi:

Costa, C., Medronho, B., Filipe, A., Mira, I., Lindman, B., Edlund, H., & Norgren, M. (2019). Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers, 11, 1570.

Delahaije, R. J. B. M., Lech, F. J., & Wierenga, P. A. (2019). Investigating the effect of temperature on the formation and stabilization of ovalbumin foams. Food Hydrocolloids, 91, 263-274. doi:

Ding, B., Shi, L., & Dong, M. (2020). Conformance control in heterogeneous two-dimensional sandpacks by injection of oil-in-water emulsion: Theory and experiments. Fuel, 273, 117751. doi:

Ding, M., Zhang, T., Zhang, H., Tao, N., Wang, X., & Zhong, J. (2020). Gelatin-stabilized traditional emulsions: emulsion forms, droplets, and storage stability. Food Science and Human Wellness. doi:

Gulão, E. d. S., Souza, C. J. F. d., Costa, A. R. d., Rocha-Leão, M. H. M. d., & Garcia-Rojas, E. E. (2018). Stability and rheological behavior of coconut oil-in-water emulsions formed by biopolymers. Polímeros, 28, 413-421. Retrieved from

Kato, A., Fujishige, T., Matsudomi, N., & Kobayashi, K. (1985). Determination of emulsifying properties of some proteins by conductivity measurements. Journal of Food Science, 50, 56-62.

Kazemzadeh, Y., Ismail, I., Rezvani, H., Sharifi, M., & Riazi, M. (2019). Experimental investigation of stability of water in oil emulsions at reservoir conditions: Effect of ion type, ion concentration, and system pressure. Fuel, 243, 15-27. doi:

Khadem, B., & Sheibat-Othman, N. (2017). Modeling stability of double emulsions. In A. Espuña, M. Graells, & L. Puigjaner (Eds.), Computer Aided Chemical Engineering (Vol. 40, pp. 493-498): Elsevier.

Kuhn, K. R., & Cunha, R. L. (2012). Flaxseed oil – Whey protein isolate emulsions: Effect of high pressure homogenization. Journal of Food Engineering, 111(2), 449-457. doi:

Mohammadzadeh, H., Koocheki, A., Kadkhodaee, R., & Razavi, S. M. A. (2013). Physical and flow properties of d-limonene-in-water emulsions stabilized with whey protein concentrate and wild sage (Salvia macrosiphon) seed gum. Food Research International, 53(1), 312-318. doi:

Ozturk, B., & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1-6. doi:

Paulo, B. B., Alvim, I. D., Reineccius, G., & Prata, A. S. (2020). Performance of oil-in-water emulsions stabilized by different types of surface-active components. Colloids and Surfaces B: Biointerfaces, 190, 110939. doi:

Salerni, F., Orsi, D., Santini, E., Liggieri, L., Ravera, F., & Cristofolini, L. (2019). Diffusing wave spectroscopy for investigating emulsions: II. Characterization of a paradigmatic oil-in-water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, 123724. doi:

Santos, D. O., Coimbra, J. S. R., Teixeira, C. R., Barreto, S. L. T., Silva, M. C. H., & Giraldo-Zuniga, A. D. (2015). Solubility of Proteins from Quail (Coturnix coturnix japonica) Egg White as Affected by Agitation Time, pH, and Salt Concentration. International Journal of Food Properties, 18(2), 250-258. doi:10.1080/10942912.2012.654557

Sapei, L. (2020). Chapter 18 - Rice husk silica for the stabilization of food-grade oil-in-water (O/W) emulsions. In K. Pal, I. Banerjee, P. Sarkar, D. Kim, W.-P. Deng, N. K. Dubey, & K. Majumder (Eds.), Biopolymer-Based Formulations (pp. 405-423): Elsevier.

Sartomo, A., Santoso, B., Ubaidillah, & Muraza, O. (2020). Recent progress on mixing technology for water-emulsion fuel: A review. Energy Conversion and Management, 213, 112817. doi:

Sousa, R. d. C. S., Coimbra, J. S. R., Garcia Rojas, E. E., Minim, L. A., Oliveira, F. C., & Minim, V. P. R. (2007). Effect of pH and salt concentration on the solubility and density of egg yolk and plasma egg yolk. LWT - Food Science and Technology, 40(7), 1253-1258. doi:

Souza, C. J. F., & Rojas, E. E. G. (2012). Emulsion of systems containing egg yolk, polysaccharides and vegetable oil. Ciência e Agrotecnologia, 36(5), 543-550. doi:

Sukhotu, R., Guo, S., Xing, J., Hu, Q., Wang, R., Shi, X., Guo, S. (2016). Changes in physiochemical properties and stability of peanut oil body emulsions by applying gum arabic. LWT - Food Science and Technology, 68, 432-438. doi:

Zambiazi, R. C., Przybylski, R., Zambiazi, M. W., & Mendonça, C. B. (2007). Fatty acids composition of vegetable oils and fats. Boletim Centro de Pesquisa de Processamento de Alimentos, 25. doi:



  • There are currently no refbacks.


Follow us


J. Bioen. Food Sci., Macapá, AP, Brazil. eISSN 2359-2710

  Licença Creative Commons 

The journal is licensed with Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional


Address for correspondence

Professor Victor Hugo Gomes Sales

Journal of Bioenergy and Food Science

Federal Institute of Amapá, Campus Macapá.

Rodovia BR 210 KM 3, s/n Bairro Brasil Novo. CEP: 68.909-398. Macapá, Brazil.

Phone: +55 (96) 3198-2150 |