Alkaline and alkaline-oxidative hydrothermal pretreatment on cellulose and lignin contents in elephant grass biomass BRS Capiaçu

Emmanuel Zullo Godinho, André Angelo Perin, Tatiana Rodrigues da Silva Baumgartner, Salah Din Mahmud Hasan

Resumen


The objective of this work was to evaluate the types of alkaline hydrothermal pretreatments on elephant grass using sodium hydroxide and hydrogen peroxide at different temperatures on lignin and cellulose contents. For this, an experimental arrangement was set up to evaluate the effects of temperature and alkaline elements, as well as their interaction on the final concentrations of cellulose and lignin. The tests were performed in triplicate, as well as comparisons of means two to two for the answers obtained, by means of statistical tests. According to the results obtained, the average contents of cellulose for pre-treatment with NaOH at temperatures of 80 and 120 ºC were 56.94% and 57.01% respectively and for peroxide (H2O2) were 53.85% and 53.73%. The average lignin contents at temperatures of 80 and 120 ºC treated with NaOH were 16.09% and 18.40% respectively, and for the pretreatment with H2O2 the contents were 12.13% and 15.00% respectively. With a focus on obtaining fermentable sugars by enzymatic hydrolysis of the pretreated elephant grass, it was concluded that the best option would be the alkaline pre-treatment with NaOH at 80 ºC, generating energy savings and considerable cellulose content.

Palabras clave


Lignin; second-generation ethanol; Pennisetum purpureum Schum

Texto completo:

PDF (PORTUGUESE) (English)

Referencias


Grasel, F. S., Stiehl, A. C. R., Bernardi, L. P., Herpich, T. L., Behrens, M. C., Andrade, J. B., Schultz, J., & Mangrich, A. S. (2017). Inovação em Biorrefinarias I. Produção de Etanol de Segunda Geração a partir de Capim-Elefante (Pennisetum purpureum) e Bagaço de Cana-de-Açucar (Saccharum officinarum)”. Revista Virtual de Química, 9(1): 4–14. https://doi.org/10.21577/1984-6835.20170003

Krishna, S. H., Rao, K. C. S., Babu, J. S., & Reddy, D. S. (2000). Studies on the production and application of cellulase from Trichoderma reesei QM-9414. Bioprocess Engineering, 22: 467-470. https://doi.org/10.1007/s004490050760

Lopes, W. B, Vieira, A. J., Porto, R. M., De, G. G. P., & Reis, M. (2009). Elephant grass treated with alkali. Revista Brasileira de Saúde e Produção Animal, 10 (3): 714-722. http://revistas.ufba.br/index.php/rbspa/article/view/1315/867/

Morais, J., Rosa, M. D. F., & Marconcini, J. (2010). Procedimentos para análise lignocelulósica. Embrapa Algodão, Documentos, 236, 54p. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/883400/1/DOC236.pdf>

Nakanishi, S. C., Nascimento, V. M., Rabelo, S. C., Sampaio, I. L. M., Junqueira, T. L., & Rocha, G. J. M. (2018). Comparative material balances and preliminary technical analysis of the pilot scale sugarcane bagasse alkaline pretreatment to 2G ethanol production. Industrial Crops and Products, 120: 187-197. https://doi.org/10.1016/j.indcrop.2018.04.064

Nikoli?, S., Vesna, L., ?or?e, V., & Ljiljana, M. (2017). Production of bioethanol from pre-treated cotton fabrics and waste cotton materials”. Carbohydrate Polymers, 164: 136–44. https://doi.org/10.1016/j.carbpol.2017.01.090

Pereira, Douglas Gualberto Sales, M. Sc., Universidade Federal de Viçosa, dezembro de 2013. Rendimentos da hidrólise enzimática e fermentação alcoólica de capim-elefante, capim-andropogon, capim-mombaça e bagaço de cana-de-açúcar para produção de etanol de segunda geração. https://doi.org/10.11606/d.76.2015.tde-23042015-104624

Rabelo, S. C. (2010). Avaliação e Otimização de Pré-Tratamentos e Hidrólise Enzimática do Bagaço de Cana-de-Açúcar para Produção de Etanol de Segunda Geração. Campinas: Universidade Estadual de Campinas (UNICAMP), 447p. Tese (Doutorado). https://doi.org/10.11606/d.76.2015.tde-23042015-104624

Scholl, A. L., Menegol, A., Pitarelo, A. P., Fontana, R. C., Zandoná Filho, A., Ramos, L. P., Dillon, A. J. P., & Camassola M. (2015). “Elephant grass (Pennisetum purpureum Schum.) pretreated via steam explosion as a carbon source for cellulases and xylanases in submerged cultivation”. Industrial Crops and Products, 70: 280–291. https://doi.org/10.1016/j.indcrop.2015.03.056

Shirkavand, E. A., Saeidbaroutian, A. N., Gapes, D. J. B., & Young, B. (2016). Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment - A review. Renewable and Sustainable Energy Reviews, 54: 217–234. https://doi.org/10.1016/j.rser.2015.10.003

Silva, E., & Rocha, C. R. (2010). Eucalipto e capim elefante: características e potencial produtivo de biomassa. Revista Agrogeoambiental 2(1): 143–52. https://doi.org/10.18406/2316-1817v2n12010263

Siqueira, L. N. (2016). Rendimento de hidrólise e produção de etanol lignocelulósico a partir de biomassa de capim elefante. Journal of bioenergy and food science. 3(4): 191–96. https://doi.org/10.18067/jbfs.v3i4.112




DOI: http://dx.doi.org/10.18067/jbfs.v6i3.263

Enlaces refback

  • No hay ningún enlace refback.
';



J. Bioen. Food Sci., Macapá, AP, Brazil. eISSN 2359-2710

  Licença Creative Commons 

The journal is licensed with Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

 

Address for correspondence

jbfs@ifap.edu.br | suporte.jbfs@ifap.edu.br