Yield of hydrolysis and production of lignocellulosic ethanol from elephant grass biomass

Lara Neiva Siqueira, Emerson Adriano Guarda, Patrícia Martins Guarda, Roseanne Batista Rodrigues da Silva, Robson dos Santos Barbosa

Abstract


Due to search for alternative biomasses, that are easy to access, low cost and high in cellulose concentration, for the production of 2nd generation ethanol - or lignocellulosic - this study was carried out with Pennisetum purpureum, known as elephant grass. The study was conducted to determine the chemical composition of elephant grass forage to evaluate its use in the production of lignocellulosic ethanol. The elephant grass stems were reaped in the experimental area of Feira Agrotecnológica de Palmas (AGROTINS) on august 2015. The results have shown that the elephant grass presented approximately 60% cellulose, demonstrating the potential use of this biomass to obtain reducing sugars. The biomass underwent chemical pretreatment before the enzymatic hydrolysis step using commercial cellulase enzyme Cellic CTEC2. After hydrolysis, gave a 54% yield of reducing sugars, which has shown a yield of 53,9% in the hydrolysis. In addition, the yield for ethanol production was 87,8%. Due to this, it is possible to assure that the elephant grass biomass has a great potential as cellulose source, therefore it can be used as an alternative that is cheap and huge in availability to the production of lignocellulosic ethanol.


Keywords


Second generation ethanol. Cellulose. Lignin. Enzymatic hydrolysis.

Full Text:

[PDF (PORTUGUESE)]

References


(1). KOHLHEPP, G. Análise da situação da produção de etanol e biodiesel no Brasil. Estudos avançados, v.24, n.68, p.223-253, 2010. DOI: 10.1590/S0103-40142010000100017

(2). NASS, L. L.; PEREIRA, P. A. A.; ELLIS, D. Biofuels in Brazil: an overview. Crop Science, Madison, v.47, p.2228-2237, 2007. DOI: 10.2135/cropsci2007.03.0166

(3). STEVENSON, D. M.; WEIMER, P. J. Isolation and characterization of a Trichoderma strain capable of fermenting cellulose to ethanol. Applied Biochemistry and biotechnology, v.59, p.721-726, 2002. DOI: 10.1007/s00253-002-1027-3

(4). NUNES, R. de M. GUARDA, E. A. SERRA, J. C. V. MARTINS, Á. A. Resíduos agroindustriais: potencial de produção do etanol de segunda geração no Brasil. Revista Liberato, v. 14, n. 22, p.113-238, 2013.

(5). BOERJAN, W.; RALPH, J.; BAUCHER, M. Lignin biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, v.54, p.519-546, 2003. DOI: 10.1146/annurev.arplant.54.031902.134938

(6). RUBIN, E.M. Genomics of cellulosic biofuels. Nature, v.454, n.7206, p.841-845, 2008. DOI: 10.1038/nature07190

(7). GARCIA, D. P. As indústrias de pellets no Brasil: o Brasil tem tudo para ser líder mundial neste segmento. Revista da Madeira, 133. ed., 2012.

(8). MORAIS, J.P.S.; ROSA, M. de F.; MARCONCINI, J.M. Procedimentos para Análise Lignocelulósica. Documentos 236, Centro Nacional de Pesquisa do Algodão, Campina Grande-PB, 2010. Disponível em:. Acesso em: 10 de set. 2015.

(9). RODRIGUES, R.C. Métodos de Análises Bromatológicas de Alimentos: Métodos Físicos, Químicos e Bromatológicos. Documentos 306, Embrapa Clima Temperado, Pelotas-RS, 2010. Disponível em: . Acesso em: 10 de Set. 2015.

(10). MENEZES, T. J. B., HENNIES, P. T. Influência do prétratamento do bagaço de cana-de-açúcar com peróxido alcalino e hidróxido de sódio no sistema celulolítico de A. níger. Coletânea ITAL, v.21, n.2, p.213-219, 1991.

(11). SANTOS, F.A.; QUEIRÓZ, J.H. de; COLODETTE, J.L.; FERNANDES, S.A.; GUIMARÃES, V.M.; REZENDE, S. T. Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova, v.35, n.5, p.1004-1010, 2012. DOI: 10.1590/S010040422012000500025

(12). IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Lavoura Temporária 2013. Disponível em: . Acesso em: 14 de Set. 2015.

(13). CQBAL – Tabelas Brasileiras de Composição de Alimentos para Ruminantes. CQBAL 3.0. Atualizado em 08 de Setembro de 2015. Disponível em: . Acesso em: 02 de Nov. 2015.

(14). HAMELINCK, C.N.; VAN HOOIJDONK, G.; FAAIJ, A.P.C. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass and Bioenergy, v.28, n.4 p.384-410, 2005. DOI:10.1016/j.biombioe.2004.09.002

(15). LU, J.; LI, Xue Zhi; ZHAO, J.; QU, Y. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water. Journal of Biomedicine and Biotechnology, v.144, p.539-547, 2013. DOI: 10.1155/2012/276278

(16). BAK, J. S.; KO, J. K.; HAN, Y. H.; LEE, B. C.; CHOI, I. G.; KIM, K. H. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, v.100, n.3, p.1285-1290, 2009. DOI: 10.1016/j.biortech.2008.09.010

(17). KRISHNAN, C.; DA COSTA SOUSA, L.; JIN, M.; CHANG, L.; DALE, B. E.; BALAN, V. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to

ethanol. Biotechnology and Bioengineering, v.107, p.441450, 2010. DOI: 10.1002/bit.22824

(18). KARIMI, K.; EMTIAZI, G.; TAHERZADEH, M. J. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microbiology Technology, v.40, p. 138-144, 2006. DOI: 10.1016/j.enzmictec.2005.10.046




DOI: http://dx.doi.org/10.18067/jbfs.v3i4.112

Refbacks

  • There are currently no refbacks.
';



J. Bioen. Food Sci., Macapá, AP, Brazil. eISSN 2359-2710

  Licença Creative Commons 

The journal is licensed with Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

 

Address for correspondence

jbfs@ifap.edu.br | suporte.jbfs@ifap.edu.br