Morphological characterization of hydrocolloids using scanning electron microscopy and evaluation of their effects in a model system of low-calorie fruit jelly

Reginaldo de Souza Monteiro, Michelle Barbosa Lima, Ney Pinheiro Sampaio, Hygor Mezadri, Orlando David Henrique dos Santos, Patrícia Aparecida Pimenta Pereira

Abstract


It is important to understand the stability of the formed gels and the factors that affect the behavior of these agents in a complex system to impart desirable properties to a new product. The purpose of this paper was to evaluate the morphological structure of gelling agents, LM-pectin, kappa-carrageenan and guar gum and to study the effects of these gelling agents in low-calorie fruit jelly model systems. Scanning electron microscopy (SEM) analysis allowed us to recognize the morphology of the gelling agents of interest, and showed that only the powdered samples of LM-pectin and kappa-carrageenan presented structures that collaborate for the process of gelling. Based on all the information gathered through the analysis of low-calorie fruit jelly modeling systems using the gelling agents studied, we suggest that the best combinations among the formulations tested were those containing concentrations higher or equal than 75% LM-pectin.

Keywords


Gelling agents, guar gum, kappa-carrageenan, LM-pectin, mixture design

Full Text:

PDF

References


Agoda-Tandjawa, G., Durand, S., Gaillard, C., Garnier, C., & Doublier, J.L. (2012). Rheological behaviour and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. Effect of calcium ions. Carbohydrate Polymers, 87(2), 1045-1057. https://doi.org/10.1016/j.carbpol.2011.08.021.

Ai, W., Fang, Y., Xiang, S., Yao, X., Nishinari, K., & Phillips, G.O. (2015). Protein/Polysaccharide electrostatic complexes and their applications in stabilizing oil-in-water emulsions. Journal of Nutritional Science and Vitaminology, 61, S168eS169. https://doi.org/10.3177/jnsv.61.S168.

Andrade, V.S., Araújo, I.O., Agibert, S.A.C., & Fernandes, S.A.C. (2016). Influence of potassium and calcium ions in the gels of kappa and iota carrageenans. Revista Eletrônica TECCEN, 5(2), 31-42. https://doi.org/10.21727/teccen.v5i2.483.

Banerjee, S., & Bhattacharya, S. (2012). Food gels: gelling process and new applications. Critical Reviews in Food Science and Nutrition, 52(4), 334-346. https://doi.org/10.1080/10408398.2010.500234.

Campo, V.L., Kawano, D.F., Silva, D.B.J., & Carvalho, I. (2009). Carrageenans: Biological properties, chemical modifications and structural analysis–A review. Carbohydrate Polymers, 77(2), 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020.

Chandrika, K.S.V., Singh, A., Sarkar, D.J., Rathore, A., & Kumar, A. (2014). pH?sensitive crosslinked guar gum?based superabsorbent hydrogels: Swelling response in simulated environments and water retention behavior in plant growth media. Journal of Applied Polymer Science, 131, 1-12. https://doi.org/10.1002/app.41060.

Chenlo, F., Moreira, R., & Silva, C. (2010). Rheological behaviour of aqueous systems of tragacanth and guar gums with storage time. Journal of Food Engineering, 96(1), 107-113. https://doi.org/10.1016/j.jfoodeng.2009.07.003.

Chomto, P., & Nunthanid, J. (2017). Physicochemical and powder characteristics of various citrus pectins and their application for oral pharmaceutical tablets. Carbohydrate Polymers, 174, 25-31. https://doi.org/10.1016/j.carbpol.2017.06.049.

Cuq, B., Rondet, E., & Abecassis, J. (2011). Food powders engineering, between knowhow and science: Constraints, stakes and opportunities. Powder Technology, 208(2), 244-251. https://doi.org/10.1016/j.powtec.2010.08.012.

Das, L., Raychaudhuri, U., & Chakraborty, R. (2015). Effects of hydrocolloids as texture improver in coriander bread. Journal of Food Science and Technology, 52, 3671–3680. https://doi.org/10.1007/s13197-014-1296-8.

Daud, J.M., Warzukni, N.S., Salim, R.M., & Zuberdi, A.M. (2015). Semi-refined ?-carrageenan: Part 1. Chemical modification of semi-refined ?-carrageenan via graft copolymerization method, optimization process and characterization of its super absorbent hydrogel. Oriental Journal of Chemistry, 31, 973-980. http://dx.doi.org/10.13005/ojc/310243.

Dewi, E.N., Ibrahim, R., & Suharto, S. (2015). Morphological structure characteristic and quality of semi refined carrageenan processed by different drying methods. Procedia Environmental Sciences, 23, 116-122. https://doi.org/10.1016/j.proenv.2015.01.018.

Dias, B.M., & Pulzatto, M.E. (2009). Preparation and evaluation of yogurt with pectin obtained from pera orange peel (Citrus sinensis L. Osbeck). Revista do Instituto de Laticínios Cândido Tostes, 64, 26-34.

Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17(1), 25-39. https://doi.org/10.1016/S0268-005X(01)00120-5.

Dodi, G., Pala, A., Barbu, E., Peptanariu, D., Hritcu, D., Popa, M.I., & Tamba, B.I. (2016). Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations. Materials Science and Engineering C: Materials for Biological Applications, 63, 628-636. https://doi.org/10.1016/j.msec.2016.03.032.

Dupuis, G., Chambin, O., & Génelot, C. (2006). Colonic Drug Delivery: Influence of Cross-linking Agent on Pectin Beads Properties and Role of the Shell Capsule type. Drug Development and Industrial Pharmacy, 32, 847–855. https://doi.org/10.1080/03639040500536718.

Einhorn-Stoll, U., Hatakeyama, H., & Hatakeyama, T. (2012). Influence of pectin modification on water binding properties. Food Hydrocolloids, 27(2), 494-502. https://doi.org/10.1016/j.foodhyd.2011.08.019.

Evageliou, V.I., Ryan, P.M., & Morris, E.R. (2019). Effect of monovalent cations on calcium-induced assemblies of kappa carrageenan. Food Hydrocolloids, 86, 141-145. https://doi.org/10.1016/j.foodhyd.2018.03.018.

Ferreira, D.F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109-112. http://dx.doi.org/10.1590/S1413-70542014000200001.

Ferrero, C. (2017). Hydrocolloids in wheat breadmaking: A concise review. Food Hydrocolloids, 68, 15–22. https://doi.org/10.1016/j.foodhyd.2016.11.044.

Fraeye, I., Colle, I., Vandevenne, E., Duvetter, T., Buggenhout, S.V., Moldenaers, P., Loey, A.V., & Hendrickx, M. (2010). Influence of pectin structure on texture of pectin-calcium gels. Innovative Food Science & Emerging Technologies, 11(2), 401-409. https://doi.org/10.1016/j.ifset.2009.08.015.

Fu, J.T., & Rao, M.A. (2001). Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose. Food Hydrocolloids, 15(1), 93-100. https://doi.org/10.1016/S0268-005X(00)00056-4.

Fu, J.T., and Rao, M.A. (1999). The influence of sucrose and sorbitol on gel–sol transition of low-methoxyl pectin+ Ca2+ gels. Food Hydrocolloids, 13(5), 371-380. https://doi.org/10.1016/S0268-005X(99)00022-3.

Funami, T. (2011). Next target for food hydrocolloid studies: texture design of foods using hydrocolloid technology. Food Hydrocolloids, 25(8), 1904–1914. https://doi.org/ 10.1016/j.foodhyd.2011.03.010.

Furmaniak, S., Terzyk, A.P., & Gauden, P.A. (2007). The general mechanism of water sorption on foodstuffs–Importance of the multitemperature fitting of data and the hierarchy of models. Journal of Food Engineering, 82(4), 528-535. https://doi.org/10.1016/j.jfoodeng.2007.03.012.

Gao, Z., Fang, Y., Cao, Y., Liao, H., Nishinari, K., & Phillips, G. O. (2017). Hydrocolloid-food component interactions. Food Hydrocolloids, 68, 149-156. https://doi.org/10.1016/j.foodhyd.2016.08.042.

Gladkowska-Balewicz, I., Norton, I.T., & Hamilton, I.E. (2014). Effect of process conditions, and component concentrations on the viscosity of ?-carrageenan and pregelatinised cross-linked waxy maize starch mixed fluid gels. Food Hydrocolloids, 42, 355-361. https://doi.org/10.1016/j.foodhyd.2014.03.003.

He, H., Ye, J., Zhang, X., Huang, Y., Li, X., & Xiao, M. (2017). ?-Carrageenan/locust bean gum as hard capsule gelling agents. Carbohydrate Polymers, 175, 417-424. https://doi.org/10.1016/j.carbpol.2017.07.049.

Kang, J., Hua, X., Yang, R., Chen, Y., & Yang, H. (2015). Characterization of natural low-methoxyl pectin from sunflower head extracted by sodium citrate and purified by ultrafiltration. Food Chemistry, 180, 98–105. https://doi.org/10.1016/j.foodchem.2015.02.037.

Kayacier, A., & Dogan, M. (2006). Rheological properties of some gums-salep mixed solutions. Journal of Food Engineering, 72(3), 261-265. https://doi.org/10.1016/j.jfoodeng.2004.12.005.

Li, X., Al-Assaf, S., Fang, Y., & Phillips, G. O. (2013). Characterisation of commercial LM-pectin in aqueous solution. Carbohydrate Polymers, 92(2), 1133-1142. https://doi.org/10.1016/j.carbpol.2012.09.100.

Liu, F., Chang, W., Chen, M., Xu, F., Ma, J., & Zhong, F. (2020). Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocolloid, 98, 1-8. https://doi.org/10.1016/j.foodhyd.2019.03.028.

López-Méndez, E.M., Ortiz-Garcia-Carrasco, B., Ruiz-Espinosa, H., Sampieri-Croda, A., García-Alvarado, M.A., Ochoa-Velasco, C.E., Escobedo-Moralesa, A., & Ruiz-Lópeza, I.I. (2018). Effect of shape change and initial geometry on water diffusivity estimation during drying of gel model systems. Journal of Food Engineering, 216, 52-64. https://doi.org/10.1016/j.jfoodeng.2017.07.033.

Mahdavinia, G.R., Etemadi, H., & Soleymani, F. (2015). Magnetic/pH-responsive beads based on caboxymethyl chitosan and ?-carrageenan and controlled drug release. Carbohydrate Polymers, 128, 112-121. https://doi.org/10.1016/j.carbpol.2015.04.022.

Maruyama, L.Y., Cardarelli, H.R., Buriti, F.C.A., & Saad, S.M.I. (2006). Instrumental texture of probiotic petit-suisse cheese: influence of different combinations of gums. Food Science and Technology, 26(2), 386-393. https://doi.org/10.1590/S0101-20612006000200022.

Mirhosseini, H., & Amid, B. T. (2012). A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Research International, 46(1), 387-398. https://doi.org/10.1016/j.foodres.2011.11.017.

Mudgil, D., Barak, S., & Khatkar, B.S. (2014). Guar gum: processing, properties and food applications—a review. Journal of Food Science and Technology, 51, 409-418. https://doi.org/10.1007/s13197-011-0522-x.

Mudgil, D., Barak, S., Patel, A., & Shah, N. (2018). Partially hydrolyzed guar gum as a potential prebiotic source. International Journal of Biological Macromolecules, 112, 207-210. https://doi.org/10.1016/j.ijbiomac.2018.01.164.

Murrieta-Pazos, I., Gaiani, C., Galet, L., Calvet, R., Cuq, B., & Scher, J. (2012). Food powders: Surface and form characterization revisited. Journal of Food Engineering, 112(1-2), 1-21. https://doi.org/10.1016/j.jfoodeng.2012.03.002.

Ormus, S., Oulahal, N., Noël, C., Degraeve, P., & Gharsallaoui, A. (2015). Effect of low methoxyl (LM) pectin complexation on the thermal and proteolytic inactivation of lysozyme: A kinetic study. Food Hydrocolloids, 43, 812-818. https://doi.org/10.1016/j.foodhyd.2014.08.016.

Panchev, I.N., Slavov, A., Nikolova, K., & Kovacheva, D. (2010). On the water-sorption properties of pectin. Food Hydrocolloids, 24(8), 763-769. https://doi.org/10.1016/j.foodhyd.2010.04.002.

Patel, J.J., Karve, M., & Patel, N.K. (2014). Guar gum: a versatile material for pharmaceutical industries. International Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 13-19.

Ping, Z.H., Nguyen, Q.T., Chen, S.M., Zhou, J.Q., & Ding, Y.D. (2001). States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer, 42(20), 8461-8467. https://doi.org/10.1016/S0032-3861(01)00358-5.

Sadeghi, M. (2012). Synthesis of a biocopolymer carrageenan-g-poly (AAm-co-IA)/montmorilonite superabsorbent hydrogel composite. Brazilian Journal of Chemical Engineering, 29(2), 295-305. https://doi.org/10.1590/S0104-66322012000200010.

Salgueiro, A.M., Daniel-Da-Silva, A.L., Fateixa, S., & Trindade, T. (2013). ?-carrageenan hydrogel nanocomposites with release behavior mediated by morphological distintc Au nanofillers. Carbohydrate Polymers, 91(1), 100-109. https://doi.org/10.1016/j.carbpol.2012.08.004.

Souza, V.R., Pereira, P.A.P., Pinheiro, A.C.M., Bolini, H.M.A., Borges, S.V., & Queiroz, F. (2013). Analysis of various sweeteners in low-sugar mixed fruit jam: equivalent sweetness, time-intensity analysis and acceptance test. International Journal of Food Science & Technology, 48(7), 1541-1548. https://doi.org/10.1111/ijfs.12123.

Steffe, J.F. (1996). Rheological methods in food process engineering. Michigan: Freeman Press, 428p.

Ström, A., Schuster, E., & Goh, S.M. (2014). Rheological characterization of acid pectin samples in the absence and presence of monovalent ions. Carbohydrate Polymers, 113, 336-343. https://doi.org/10.1016/j.carbpol.2014.06.090.

Szopinski, D., & Luinstra, G.A. (2016). Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS). Carbohydrate Polymers, 153, 312-319. https://doi.org/10.1016/j.carbpol.2016.07.095.

Van De Velde, F., Weinbreck, F., Edelman, M.W., Van Der Linden, E., & Tromp, R.H. (2003). Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques. Colloids and Surfaces B: Biointerfaces, 31(1-4), 159-168. https://doi.org/10.1016/S0927-7765(03)00135-8.

Vieira, J.M., Oliveira Jr, F.D., Salvaro, D.B., Maffezzolli, G.P., Mello, J.D.B., Vicente, A.A., & Cunha, R.L. (2020). Rheology and soft tribology of thickened dispersions aiming the development of oropharyngeal dysphagia-oriented products. Current Research in Food Science, 3, 19–29. https://doi.org/10.1016/j.crfs.2020.02.001.

Vincent, R.R., & Williams, M.A. (2009). Microrheological investigations give insights into the microstructure and functionality of pectin gels. Carbohydrate Polymers, 344(14), 1863-1871. https://doi.org/10.1016/j.carres.2008.11.021.

Waje, S.S., Meshram, M.W., Chaudhary, V., Pandey, R., Mahanawar, P.A., & Thorat, B.N. (2005). Drying and shrinkage of polymer gels. Brazilian Journal of Chemical Engineering, 22(2), 209-216. https://doi.org/10.1590/S0104-66322005000200007.

Wang, Q., Ellis, P.R., & Ross-Murphy, S.B. (2003). Dissolution kinetics of guar gum powders—II. Effects of concentration and molecular weight. Carbohydrate Polymers, 53(1), 75-83. https://doi.org/10.1016/S0144-8617(03)00009-2.

Wei, C., Zhang, Y., Li, J., Tao, W., Lichardt, R.J., Chen, S., & Ye, X. (2019). Physicochemical properties and conformations of water-soluble peach gums via different preparation methods. Food Hydrocolloids, 1, 1-9. https://doi.org/10.1016/j.foodhyd.2018.03.049.

Wu, Y., Ding, W., Jia, L., & He, Q. (2016). Molecular characteristics of tara galactomannans: effect of degradation with hydrogen peroxide. International Journal of Food Properties, 20(12), 3014-3022. https://doi.org/10.1080/10942912.2016.1270300.

Yaseen, E.I., Herald, T.J., Aramouni, F.M., & Alavi, S. (2005). Rheological properties of selected gum solutions. Food Research International, 38 (2), 111-119. https://doi.org/10.1016/j.foodres.2004.01.013.




DOI: http://dx.doi.org/10.18067/jbfs.v7i4.310

Refbacks

  • There are currently no refbacks.
';



J. Bioen. Food Sci., Macapá, AP, Brazil. eISSN 2359-2710

  Licença Creative Commons 

The journal is licensed with Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

 

Address for correspondence

jbfs@ifap.edu.br | suporte.jbfs@ifap.edu.br