Morphological characterization of hydrocolloids using scanning electron microscopy and evaluation of their effects in a model system of low-calorie fruit jelly
Abstract
Keywords
Full Text:
PDFReferences
Agoda-Tandjawa, G., Durand, S., Gaillard, C., Garnier, C., & Doublier, J.L. (2012). Rheological behaviour and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. Effect of calcium ions. Carbohydrate Polymers, 87(2), 1045-1057. https://doi.org/10.1016/j.carbpol.2011.08.021.
Ai, W., Fang, Y., Xiang, S., Yao, X., Nishinari, K., & Phillips, G.O. (2015). Protein/Polysaccharide electrostatic complexes and their applications in stabilizing oil-in-water emulsions. Journal of Nutritional Science and Vitaminology, 61, S168eS169. https://doi.org/10.3177/jnsv.61.S168.
Andrade, V.S., Araújo, I.O., Agibert, S.A.C., & Fernandes, S.A.C. (2016). Influence of potassium and calcium ions in the gels of kappa and iota carrageenans. Revista Eletrônica TECCEN, 5(2), 31-42. https://doi.org/10.21727/teccen.v5i2.483.
Banerjee, S., & Bhattacharya, S. (2012). Food gels: gelling process and new applications. Critical Reviews in Food Science and Nutrition, 52(4), 334-346. https://doi.org/10.1080/10408398.2010.500234.
Campo, V.L., Kawano, D.F., Silva, D.B.J., & Carvalho, I. (2009). Carrageenans: Biological properties, chemical modifications and structural analysis–A review. Carbohydrate Polymers, 77(2), 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020.
Chandrika, K.S.V., Singh, A., Sarkar, D.J., Rathore, A., & Kumar, A. (2014). pH?sensitive crosslinked guar gum?based superabsorbent hydrogels: Swelling response in simulated environments and water retention behavior in plant growth media. Journal of Applied Polymer Science, 131, 1-12. https://doi.org/10.1002/app.41060.
Chenlo, F., Moreira, R., & Silva, C. (2010). Rheological behaviour of aqueous systems of tragacanth and guar gums with storage time. Journal of Food Engineering, 96(1), 107-113. https://doi.org/10.1016/j.jfoodeng.2009.07.003.
Chomto, P., & Nunthanid, J. (2017). Physicochemical and powder characteristics of various citrus pectins and their application for oral pharmaceutical tablets. Carbohydrate Polymers, 174, 25-31. https://doi.org/10.1016/j.carbpol.2017.06.049.
Cuq, B., Rondet, E., & Abecassis, J. (2011). Food powders engineering, between knowhow and science: Constraints, stakes and opportunities. Powder Technology, 208(2), 244-251. https://doi.org/10.1016/j.powtec.2010.08.012.
Das, L., Raychaudhuri, U., & Chakraborty, R. (2015). Effects of hydrocolloids as texture improver in coriander bread. Journal of Food Science and Technology, 52, 3671–3680. https://doi.org/10.1007/s13197-014-1296-8.
Daud, J.M., Warzukni, N.S., Salim, R.M., & Zuberdi, A.M. (2015). Semi-refined ?-carrageenan: Part 1. Chemical modification of semi-refined ?-carrageenan via graft copolymerization method, optimization process and characterization of its super absorbent hydrogel. Oriental Journal of Chemistry, 31, 973-980. http://dx.doi.org/10.13005/ojc/310243.
Dewi, E.N., Ibrahim, R., & Suharto, S. (2015). Morphological structure characteristic and quality of semi refined carrageenan processed by different drying methods. Procedia Environmental Sciences, 23, 116-122. https://doi.org/10.1016/j.proenv.2015.01.018.
Dias, B.M., & Pulzatto, M.E. (2009). Preparation and evaluation of yogurt with pectin obtained from pera orange peel (Citrus sinensis L. Osbeck). Revista do Instituto de Laticínios Cândido Tostes, 64, 26-34.
Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17(1), 25-39. https://doi.org/10.1016/S0268-005X(01)00120-5.
Dodi, G., Pala, A., Barbu, E., Peptanariu, D., Hritcu, D., Popa, M.I., & Tamba, B.I. (2016). Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations. Materials Science and Engineering C: Materials for Biological Applications, 63, 628-636. https://doi.org/10.1016/j.msec.2016.03.032.
Dupuis, G., Chambin, O., & Génelot, C. (2006). Colonic Drug Delivery: Influence of Cross-linking Agent on Pectin Beads Properties and Role of the Shell Capsule type. Drug Development and Industrial Pharmacy, 32, 847–855. https://doi.org/10.1080/03639040500536718.
Einhorn-Stoll, U., Hatakeyama, H., & Hatakeyama, T. (2012). Influence of pectin modification on water binding properties. Food Hydrocolloids, 27(2), 494-502. https://doi.org/10.1016/j.foodhyd.2011.08.019.
Evageliou, V.I., Ryan, P.M., & Morris, E.R. (2019). Effect of monovalent cations on calcium-induced assemblies of kappa carrageenan. Food Hydrocolloids, 86, 141-145. https://doi.org/10.1016/j.foodhyd.2018.03.018.
Ferreira, D.F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109-112. http://dx.doi.org/10.1590/S1413-70542014000200001.
Ferrero, C. (2017). Hydrocolloids in wheat breadmaking: A concise review. Food Hydrocolloids, 68, 15–22. https://doi.org/10.1016/j.foodhyd.2016.11.044.
Fraeye, I., Colle, I., Vandevenne, E., Duvetter, T., Buggenhout, S.V., Moldenaers, P., Loey, A.V., & Hendrickx, M. (2010). Influence of pectin structure on texture of pectin-calcium gels. Innovative Food Science & Emerging Technologies, 11(2), 401-409. https://doi.org/10.1016/j.ifset.2009.08.015.
Fu, J.T., & Rao, M.A. (2001). Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose. Food Hydrocolloids, 15(1), 93-100. https://doi.org/10.1016/S0268-005X(00)00056-4.
Fu, J.T., and Rao, M.A. (1999). The influence of sucrose and sorbitol on gel–sol transition of low-methoxyl pectin+ Ca2+ gels. Food Hydrocolloids, 13(5), 371-380. https://doi.org/10.1016/S0268-005X(99)00022-3.
Funami, T. (2011). Next target for food hydrocolloid studies: texture design of foods using hydrocolloid technology. Food Hydrocolloids, 25(8), 1904–1914. https://doi.org/ 10.1016/j.foodhyd.2011.03.010.
Furmaniak, S., Terzyk, A.P., & Gauden, P.A. (2007). The general mechanism of water sorption on foodstuffs–Importance of the multitemperature fitting of data and the hierarchy of models. Journal of Food Engineering, 82(4), 528-535. https://doi.org/10.1016/j.jfoodeng.2007.03.012.
Gao, Z., Fang, Y., Cao, Y., Liao, H., Nishinari, K., & Phillips, G. O. (2017). Hydrocolloid-food component interactions. Food Hydrocolloids, 68, 149-156. https://doi.org/10.1016/j.foodhyd.2016.08.042.
Gladkowska-Balewicz, I., Norton, I.T., & Hamilton, I.E. (2014). Effect of process conditions, and component concentrations on the viscosity of ?-carrageenan and pregelatinised cross-linked waxy maize starch mixed fluid gels. Food Hydrocolloids, 42, 355-361. https://doi.org/10.1016/j.foodhyd.2014.03.003.
He, H., Ye, J., Zhang, X., Huang, Y., Li, X., & Xiao, M. (2017). ?-Carrageenan/locust bean gum as hard capsule gelling agents. Carbohydrate Polymers, 175, 417-424. https://doi.org/10.1016/j.carbpol.2017.07.049.
Kang, J., Hua, X., Yang, R., Chen, Y., & Yang, H. (2015). Characterization of natural low-methoxyl pectin from sunflower head extracted by sodium citrate and purified by ultrafiltration. Food Chemistry, 180, 98–105. https://doi.org/10.1016/j.foodchem.2015.02.037.
Kayacier, A., & Dogan, M. (2006). Rheological properties of some gums-salep mixed solutions. Journal of Food Engineering, 72(3), 261-265. https://doi.org/10.1016/j.jfoodeng.2004.12.005.
Li, X., Al-Assaf, S., Fang, Y., & Phillips, G. O. (2013). Characterisation of commercial LM-pectin in aqueous solution. Carbohydrate Polymers, 92(2), 1133-1142. https://doi.org/10.1016/j.carbpol.2012.09.100.
Liu, F., Chang, W., Chen, M., Xu, F., Ma, J., & Zhong, F. (2020). Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocolloid, 98, 1-8. https://doi.org/10.1016/j.foodhyd.2019.03.028.
López-Méndez, E.M., Ortiz-Garcia-Carrasco, B., Ruiz-Espinosa, H., Sampieri-Croda, A., García-Alvarado, M.A., Ochoa-Velasco, C.E., Escobedo-Moralesa, A., & Ruiz-Lópeza, I.I. (2018). Effect of shape change and initial geometry on water diffusivity estimation during drying of gel model systems. Journal of Food Engineering, 216, 52-64. https://doi.org/10.1016/j.jfoodeng.2017.07.033.
Mahdavinia, G.R., Etemadi, H., & Soleymani, F. (2015). Magnetic/pH-responsive beads based on caboxymethyl chitosan and ?-carrageenan and controlled drug release. Carbohydrate Polymers, 128, 112-121. https://doi.org/10.1016/j.carbpol.2015.04.022.
Maruyama, L.Y., Cardarelli, H.R., Buriti, F.C.A., & Saad, S.M.I. (2006). Instrumental texture of probiotic petit-suisse cheese: influence of different combinations of gums. Food Science and Technology, 26(2), 386-393. https://doi.org/10.1590/S0101-20612006000200022.
Mirhosseini, H., & Amid, B. T. (2012). A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Research International, 46(1), 387-398. https://doi.org/10.1016/j.foodres.2011.11.017.
Mudgil, D., Barak, S., & Khatkar, B.S. (2014). Guar gum: processing, properties and food applications—a review. Journal of Food Science and Technology, 51, 409-418. https://doi.org/10.1007/s13197-011-0522-x.
Mudgil, D., Barak, S., Patel, A., & Shah, N. (2018). Partially hydrolyzed guar gum as a potential prebiotic source. International Journal of Biological Macromolecules, 112, 207-210. https://doi.org/10.1016/j.ijbiomac.2018.01.164.
Murrieta-Pazos, I., Gaiani, C., Galet, L., Calvet, R., Cuq, B., & Scher, J. (2012). Food powders: Surface and form characterization revisited. Journal of Food Engineering, 112(1-2), 1-21. https://doi.org/10.1016/j.jfoodeng.2012.03.002.
Ormus, S., Oulahal, N., Noël, C., Degraeve, P., & Gharsallaoui, A. (2015). Effect of low methoxyl (LM) pectin complexation on the thermal and proteolytic inactivation of lysozyme: A kinetic study. Food Hydrocolloids, 43, 812-818. https://doi.org/10.1016/j.foodhyd.2014.08.016.
Panchev, I.N., Slavov, A., Nikolova, K., & Kovacheva, D. (2010). On the water-sorption properties of pectin. Food Hydrocolloids, 24(8), 763-769. https://doi.org/10.1016/j.foodhyd.2010.04.002.
Patel, J.J., Karve, M., & Patel, N.K. (2014). Guar gum: a versatile material for pharmaceutical industries. International Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 13-19.
Ping, Z.H., Nguyen, Q.T., Chen, S.M., Zhou, J.Q., & Ding, Y.D. (2001). States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer, 42(20), 8461-8467. https://doi.org/10.1016/S0032-3861(01)00358-5.
Sadeghi, M. (2012). Synthesis of a biocopolymer carrageenan-g-poly (AAm-co-IA)/montmorilonite superabsorbent hydrogel composite. Brazilian Journal of Chemical Engineering, 29(2), 295-305. https://doi.org/10.1590/S0104-66322012000200010.
Salgueiro, A.M., Daniel-Da-Silva, A.L., Fateixa, S., & Trindade, T. (2013). ?-carrageenan hydrogel nanocomposites with release behavior mediated by morphological distintc Au nanofillers. Carbohydrate Polymers, 91(1), 100-109. https://doi.org/10.1016/j.carbpol.2012.08.004.
Souza, V.R., Pereira, P.A.P., Pinheiro, A.C.M., Bolini, H.M.A., Borges, S.V., & Queiroz, F. (2013). Analysis of various sweeteners in low-sugar mixed fruit jam: equivalent sweetness, time-intensity analysis and acceptance test. International Journal of Food Science & Technology, 48(7), 1541-1548. https://doi.org/10.1111/ijfs.12123.
Steffe, J.F. (1996). Rheological methods in food process engineering. Michigan: Freeman Press, 428p.
Ström, A., Schuster, E., & Goh, S.M. (2014). Rheological characterization of acid pectin samples in the absence and presence of monovalent ions. Carbohydrate Polymers, 113, 336-343. https://doi.org/10.1016/j.carbpol.2014.06.090.
Szopinski, D., & Luinstra, G.A. (2016). Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS). Carbohydrate Polymers, 153, 312-319. https://doi.org/10.1016/j.carbpol.2016.07.095.
Van De Velde, F., Weinbreck, F., Edelman, M.W., Van Der Linden, E., & Tromp, R.H. (2003). Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques. Colloids and Surfaces B: Biointerfaces, 31(1-4), 159-168. https://doi.org/10.1016/S0927-7765(03)00135-8.
Vieira, J.M., Oliveira Jr, F.D., Salvaro, D.B., Maffezzolli, G.P., Mello, J.D.B., Vicente, A.A., & Cunha, R.L. (2020). Rheology and soft tribology of thickened dispersions aiming the development of oropharyngeal dysphagia-oriented products. Current Research in Food Science, 3, 19–29. https://doi.org/10.1016/j.crfs.2020.02.001.
Vincent, R.R., & Williams, M.A. (2009). Microrheological investigations give insights into the microstructure and functionality of pectin gels. Carbohydrate Polymers, 344(14), 1863-1871. https://doi.org/10.1016/j.carres.2008.11.021.
Waje, S.S., Meshram, M.W., Chaudhary, V., Pandey, R., Mahanawar, P.A., & Thorat, B.N. (2005). Drying and shrinkage of polymer gels. Brazilian Journal of Chemical Engineering, 22(2), 209-216. https://doi.org/10.1590/S0104-66322005000200007.
Wang, Q., Ellis, P.R., & Ross-Murphy, S.B. (2003). Dissolution kinetics of guar gum powders—II. Effects of concentration and molecular weight. Carbohydrate Polymers, 53(1), 75-83. https://doi.org/10.1016/S0144-8617(03)00009-2.
Wei, C., Zhang, Y., Li, J., Tao, W., Lichardt, R.J., Chen, S., & Ye, X. (2019). Physicochemical properties and conformations of water-soluble peach gums via different preparation methods. Food Hydrocolloids, 1, 1-9. https://doi.org/10.1016/j.foodhyd.2018.03.049.
Wu, Y., Ding, W., Jia, L., & He, Q. (2016). Molecular characteristics of tara galactomannans: effect of degradation with hydrogen peroxide. International Journal of Food Properties, 20(12), 3014-3022. https://doi.org/10.1080/10942912.2016.1270300.
Yaseen, E.I., Herald, T.J., Aramouni, F.M., & Alavi, S. (2005). Rheological properties of selected gum solutions. Food Research International, 38 (2), 111-119. https://doi.org/10.1016/j.foodres.2004.01.013.
DOI: http://dx.doi.org/10.18067/jbfs.v7i4.310
Refbacks
- There are currently no refbacks.
J. Bioen. Food Sci., Macapá, AP, Brazil. eISSN 2359-2710
The journal is licensed with Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional
Address for correspondence
jbfs@ifap.edu.br | suporte.jbfs@ifap.edu.br