Determination of emulsifying properties of chicken egg white and dehydrated egg white in different vegetable oils and ion concentration
Abstract
Emulsifying properties of oil in water emulsions using chicken egg white and dried egg white as an emulsifying agent were investigated using the conductivity technique. Changes in emulsion conductivity were recorded during and after homogenization and interpreted in terms of properties related to the emulsifying activity (EA) and emulsion stability (ES). The effect of NaCl concentration (0.0, 0.1, 0.5 and 1.0 % w/w), chicken egg white and dried egg white concentration (1.0, 2.5 and 5.0 % w/w) was studied using two vegetable oils, namely corn and canola. In general, it was observed that the EA and ES increase with increasing protein content and salt concentration, in a manner consistent with past research.
Keywords
Full Text:
PDFReferences
Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: A comparative review. Energy Conversion and Management 63, 138-148. doi:10.1016/j.enconman.2012.02.027
Ahmadi, P., Asaadian, H., Kord, S., & Khadivi, A. (2019). Investigation of the simultaneous chemicals influences to promote oil-in-water emulsions stability during enhanced oil recovery applications. Journal of Molecular Liquids, 275, 57-70. doi:https://doi.org/10.1016/j.molliq.2018.11.004
Al-Malah, K. I., Azzam, M. O. J., & Omari, R. M. (2000). Emulsifying properties of BSA in different vegetable oil emulsions using conductivity technique. Food Hydrocolloids, 14(5), 485-490. doi:https://doi.org/10.1016/S0268-005X(00)00028-X
Azzam, M. O. J., Al-Malah, K. I., & Omari, R. M. (2012). Jojoba Oil/Water Emulsions Stabilized by BSA and Egg Proteins: A Study Using Conductivity Technique. Journal of Dispersion Science and Technology, 33(7), 1000-1005. doi:10.1080/01932691.2011.590440
Azzam, M. O. J., & Omari, R. M. (2002). Stability of egg white-stabilized edible oil emulsions using conductivity technique. Food Hydrocolloids, 16(2), 105-110. doi:https://doi.org/10.1016/S0268-005X(01)00068-6
Cabrera-Trujillo, M. A., Filomena-Ambrosio, A., Quintanilla-Carvajal, M. X., & Sotelo-Díaz, L. I. (2018). Stability of low-fat oil in water emulsions obtained by ultra turrax, rotor-stator and ultrasound homogenization methods. International Journal of Gastronomy and Food Science, 13, 58-64. doi:https://doi.org/10.1016/j.ijgfs.2018.06.002
Costa, C., Medronho, B., Filipe, A., Mira, I., Lindman, B., Edlund, H., & Norgren, M. (2019). Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers, 11, 1570.
Delahaije, R. J. B. M., Lech, F. J., & Wierenga, P. A. (2019). Investigating the effect of temperature on the formation and stabilization of ovalbumin foams. Food Hydrocolloids, 91, 263-274. doi:https://doi.org/10.1016/j.foodhyd.2019.01.030
Ding, B., Shi, L., & Dong, M. (2020). Conformance control in heterogeneous two-dimensional sandpacks by injection of oil-in-water emulsion: Theory and experiments. Fuel, 273, 117751. doi:https://doi.org/10.1016/j.fuel.2020.117751
Ding, M., Zhang, T., Zhang, H., Tao, N., Wang, X., & Zhong, J. (2020). Gelatin-stabilized traditional emulsions: emulsion forms, droplets, and storage stability. Food Science and Human Wellness. doi:https://doi.org/10.1016/j.fshw.2020.04.007
Gulão, E. d. S., Souza, C. J. F. d., Costa, A. R. d., Rocha-Leão, M. H. M. d., & Garcia-Rojas, E. E. (2018). Stability and rheological behavior of coconut oil-in-water emulsions formed by biopolymers. Polímeros, 28, 413-421. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282018000500413&nrm=iso
Kato, A., Fujishige, T., Matsudomi, N., & Kobayashi, K. (1985). Determination of emulsifying properties of some proteins by conductivity measurements. Journal of Food Science, 50, 56-62.
Kazemzadeh, Y., Ismail, I., Rezvani, H., Sharifi, M., & Riazi, M. (2019). Experimental investigation of stability of water in oil emulsions at reservoir conditions: Effect of ion type, ion concentration, and system pressure. Fuel, 243, 15-27. doi:https://doi.org/10.1016/j.fuel.2019.01.071
Khadem, B., & Sheibat-Othman, N. (2017). Modeling stability of double emulsions. In A. Espuña, M. Graells, & L. Puigjaner (Eds.), Computer Aided Chemical Engineering (Vol. 40, pp. 493-498): Elsevier.
Kuhn, K. R., & Cunha, R. L. (2012). Flaxseed oil – Whey protein isolate emulsions: Effect of high pressure homogenization. Journal of Food Engineering, 111(2), 449-457. doi:https://doi.org/10.1016/j.jfoodeng.2012.01.016
Mohammadzadeh, H., Koocheki, A., Kadkhodaee, R., & Razavi, S. M. A. (2013). Physical and flow properties of d-limonene-in-water emulsions stabilized with whey protein concentrate and wild sage (Salvia macrosiphon) seed gum. Food Research International, 53(1), 312-318. doi:https://doi.org/10.1016/j.foodres.2013.04.028
Ozturk, B., & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1-6. doi:https://doi.org/10.1016/j.cofs.2015.07.008
Paulo, B. B., Alvim, I. D., Reineccius, G., & Prata, A. S. (2020). Performance of oil-in-water emulsions stabilized by different types of surface-active components. Colloids and Surfaces B: Biointerfaces, 190, 110939. doi:https://doi.org/10.1016/j.colsurfb.2020.110939
Salerni, F., Orsi, D., Santini, E., Liggieri, L., Ravera, F., & Cristofolini, L. (2019). Diffusing wave spectroscopy for investigating emulsions: II. Characterization of a paradigmatic oil-in-water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, 123724. doi:https://doi.org/10.1016/j.colsurfa.2019.123724
Santos, D. O., Coimbra, J. S. R., Teixeira, C. R., Barreto, S. L. T., Silva, M. C. H., & Giraldo-Zuniga, A. D. (2015). Solubility of Proteins from Quail (Coturnix coturnix japonica) Egg White as Affected by Agitation Time, pH, and Salt Concentration. International Journal of Food Properties, 18(2), 250-258. doi:10.1080/10942912.2012.654557
Sapei, L. (2020). Chapter 18 - Rice husk silica for the stabilization of food-grade oil-in-water (O/W) emulsions. In K. Pal, I. Banerjee, P. Sarkar, D. Kim, W.-P. Deng, N. K. Dubey, & K. Majumder (Eds.), Biopolymer-Based Formulations (pp. 405-423): Elsevier.
Sartomo, A., Santoso, B., Ubaidillah, & Muraza, O. (2020). Recent progress on mixing technology for water-emulsion fuel: A review. Energy Conversion and Management, 213, 112817. doi:https://doi.org/10.1016/j.enconman.2020.112817
Sousa, R. d. C. S., Coimbra, J. S. R., Garcia Rojas, E. E., Minim, L. A., Oliveira, F. C., & Minim, V. P. R. (2007). Effect of pH and salt concentration on the solubility and density of egg yolk and plasma egg yolk. LWT - Food Science and Technology, 40(7), 1253-1258. doi:https://doi.org/10.1016/j.lwt.2006.08.001
Souza, C. J. F., & Rojas, E. E. G. (2012). Emulsion of systems containing egg yolk, polysaccharides and vegetable oil. Ciência e Agrotecnologia, 36(5), 543-550. doi:https://doi.org/10.1590/S1413-70542012000500007
Sukhotu, R., Guo, S., Xing, J., Hu, Q., Wang, R., Shi, X., Guo, S. (2016). Changes in physiochemical properties and stability of peanut oil body emulsions by applying gum arabic. LWT - Food Science and Technology, 68, 432-438. doi:https://doi.org/10.1016/j.lwt.2015.12.055
Zambiazi, R. C., Przybylski, R., Zambiazi, M. W., & Mendonça, C. B. (2007). Fatty acids composition of vegetable oils and fats. Boletim Centro de Pesquisa de Processamento de Alimentos, 25. doi: http://dx.doi.org/10.5380/cep.v25i1.8399
DOI: http://dx.doi.org/10.18067/jbfs.v7i3.302
Refbacks
- There are currently no refbacks.
J. Bioen. Food Sci., Macapá, AP, Brazil. eISSN 2359-2710
The journal is licensed with Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional
Address for correspondence
jbfs@ifap.edu.br | suporte.jbfs@ifap.edu.br